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Abstract
A theoretical scheme is presented for the entanglement of two-electron spin qubits bound in
series within a quasi-one-dimensional mesoscopic structure at a distance beyond their normal
range of interaction. A third electron is scattered from them, and full entanglement is achieved
upon measurement of a transmitted electron in the correct spin state. Critically, each bound
electron is trapped within an individual structure that has at least two spatial states. Two simple
examples of such structures are discussed here. One is a ‘stub’, in which a quantum dot (for
example) is coupled to one side of the quasi-one-dimensional structure. The other is a pair of
degenerate, coupled quantum dots, with strong interdot Coulomb repulsion, placed within the
one-dimensional superstructure. Both of these are shown to allow generation of entanglement
with a significant probability of success. In contrast to the results of the authors’ previous
works, this allows for the generation of entanglement in a series, rather than in a parallel,
configuration of the bound electrons with respect to the propagating electron.

1. Introduction

Experimental technologies for the realization of qubits as
electron spins in the solid state are rapidly progressing at the
present time. A prominent example of these technologies is
the use of quantum dots (QDs) to isolate and control individual
electron spin qubits [1–5]. These systems offer relatively long
coherence and spin relaxation times along with exploitation of
existing solid state technologies. The majority of the existing
work in this field has used gate-defined QDs in semiconductor
environments, but it has also been recognized that mesoscopic
molecular carbon environments, such as [6, 7] fullerenes and
carbon nanotubes, have potential as qubit hosts, including
increased coherence and relaxation times, in addition to the
possibility of limited ballistic and coherent electron transport in
the nanotubes [8, 9, 7, 6]. The use of carbon nanotubes, which
are pseudo-one-dimensional structures, enables spin qubits to
be ordered and addressed in a controlled manner, at pseudo-
zero-dimensional structures along the length of a tube. Recent
research in this area has focused on the use of gate-defined
QDs [10–12].

In the context of a one-dimensional array of bound spin
qubits, a ‘flying qubit’ could be used to mediate interactions
between the constituent qubits. A flying qubit is a mobile
physical system which also acts as a qubit in itself. An
obvious candidate for such a system in the solid state is

another electron, this time able to propagate rather than
being bound at a QD—an electron traveling along a carbon
nanotube, for example. Such a flying qubit could induce
entanglement between two ‘static’ qubits well beyond the
range of their direct interactions, for example by scattering
from them in a spin-dependent manner. In order to explore
this possibility theoretically, a quantum dot embedded in a
one-dimensional structure can be modeled using a ‘real-space
Anderson’ Hamiltonian [13]. This Hamiltonian represents the
quantum dot as a single binding site in a discretized chain,
with a distinct on-site single-electron energy and a Coulomb
repulsion. It is labeled ‘real-space Anderson’ in reference
to the original Anderson model [14], which models magnetic
impurities in metals as a single energy level with a Coulomb
repulsion coupled to a continuum of states.

Using this [13] and other [15, 16] methods, it has been
demonstrated that a propagating electron can be fully entangled
with a bound electron by scattering. For the appropriate
propagation momenta, a combination of strong backscattering
and Coulomb-mediated resonance achieves near-complete
separation of the singlet and triplet states with respect to
transmission and reflection. Unfortunately, as the authors of
this study have reported elsewhere [17] this means that the
scattering of a propagating electron cannot entangle the spins
of two electrons bound at real-space Anderson sites in series,
with any significant probability of success. This is one example
of the monogamy theorem [18].
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In this study, it is shown that a modest addition to the real-
space Anderson binding structure—the expansion of the one-
spatial-state binding structure to include two spatial states—
will allow the spins of two electrons bound in series to be
entangled with a reasonably high probability of success (up
to ∼0.24). These structures that give rise to two single-
electron spatial states, referred to for brevity as ‘two-state
structures’, are represented in a modification of the real-
space Anderson model. Each bound electron is placed at a
separate two-state binding structure (see figure 1). Although
the authors have reported elsewhere [17] on the possible
generation of entanglement between bound electrons in a
parallel configuration, the approach described here allows for
a (experimentally much simpler) series configuration. It also
represents a new approach to the entanglement-by-scattering
problem, actively exploiting the additional degree of freedom
available to the qubit-bearing electrons (the additional spatial
state) to enhance the degree of entanglement.

A few previous theoretical studies [19–23] have predicted
the entanglement of static spins in series by scattering of
a propagating electron. These studies have modeled the
interaction between the propagating and the static spins using
an exchange-type interaction that is ‘switched on’ when the
propagating electron occupies a specified point in space, the
point of closest approach to the static spin. In reference to
its resemblance to the s–d model [14], in which electrons in a
continuum interact with a fixed, external spin via an exchange-
type coupling, this is labeled for convenience as the ‘point s–d’
model in this study. This will be discussed further in section 2.

The idea of using a mobile mediating agent to create
entanglement between two qubits beyond the effective range
of interaction between their physical embodiments is even
older [24]; the concept was first applied to electron spins in
the solid state by Leuenberger et al [25], with the proposed
use of a photon as a mediating agent. Although photons
have greater coherence lengths than electrons, the investigation
of propagating electrons as mediating agents continues in
this study (among others). The reason for this is simply
that bringing about useful interactions between photons and
electrons requires a radically different experimental set-up to
that used for electron waveguides and/or nanowires (compare
the techniques of [26], in which spin operations are carried
out with photons, to those of [12], a candidate system for
development into the scheme proposed in this study). At this
comparatively early stage in the development of solid state
quantum computing, it is difficult to say which of the two
kinds of electron spin-based system will be most useful. The
superior coherence characteristics of the photon will only be
one factor in making this decision. At the current time, it
is therefore desirable to continue the theoretical investigation
of both electronic and photonic approaches to the use of a
mediating agent.

The use of two-state Anderson-type binding structures
for the bound electrons means that backscattering and
Coulomb-mediated resonance will not automatically result in
high singlet/triplet filtering, and hence entanglement can in
principle be produced by scattering between two electrons
bound in series. An additional requirement on a system

Figure 1. Two general two-state binding structures in the real-space
Anderson model. See section 2, equations (1)–(4) and accompanying
discussion for more details.

corresponding to the Anderson-type model in this scheme
is that neither of the bound electrons should be ionized.
Considering this requirement, this study focuses on two simple
examples of two-state binding structures. In the first, a single-
state binding site is placed to one side of a one-dimensional
structure, and couples to one discretized site in that structure
(the latter is the spatially-defined ‘second state’ of the binding
structure, in this case). In the second, one state of the binding
structure is embedded in the one-dimensional structure, and the
second state (assumed to be near-degenerate) is coupled to the
first.

The basic form of the individual structures is similar
to that proposed by Loss and Sukhorukov [27] for the
measurement of entanglement between two spins. In the
current study, however, the electrons to be entangled are
localized at separate two-state structures placed in series. This
is in distinction to the work of Loss and Sukhorukov, in which
the electrons occupy two states (quantum dots) of a single
structure.

Using Anderson-type models for these two-state binding
structures, this study calculates the spin-dependent scattering
behavior of a propagating electron from two electrons bound
in series at separate binding structures. In order to focus on
the essentials of entanglement generation, all calculations are
carried out in the elastic scattering regime, and the Sz = 1

2

spin subspace. The behavior of the Sz = − 1
2 subspace follows

trivially by symmetry, and since no explicit spin-flip terms are
included in the model, the |Sz| = 3

2 subspaces are irrelevant
to the generation of entanglement. The relevant three-electron
spin states are therefore |↓↑↑〉, |↑↓↑〉 and |↑↑↓〉. The degree
of entanglement resulting from the scattering process will
be dictated by the presence of the |↓↑〉 and |↑↓〉 states of
the bound electrons after scattering, and hence by the spin-
dependent scattering behavior. Scattering and entanglement
calculations are reported for the ‘stub’ type two-state structure
in section 3, and for the ‘double QD’ type structure in section 4.
In both cases it is shown that careful tuning of the parameters
can result in fully entangled bound electrons with a reasonable
probability of success. Scattering and entanglement for the
point s–d model are briefly revisited in section 2, in the context
of the discretized model used for the one-dimensional structure
in this study.

2. Theory and methodology

In this study, a quasi-one-dimensional structure containing
two two-state binding structures is modeled as an ideal,
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discretized chain of tight-binding-model-type sites, in which
the states of the binding structures are treated as additional sites
subject to differing on-site energies and two-electron Coulomb
repulsions. The overall system is illustrated in figure 1.

The Hamiltonian for the system is

Ĥ = ĤR + ĤL + ĤC + ĤI + ĤBS, (1)

where

ĤR = −
[ ∞∑

n=x2+1

∑
σ

tc†
n+1σ cnσ + h.c.

]
(2)

is the Hamiltonian for the right lead. The Hamiltonian for the
left lead, ĤL, is similar, with the summation over n running
from −∞ to x1 − 2. The Hamiltonian for the structure
intermediate between the binding structures, ĤC is also similar,
with the summation over n running from x1 + 1 to x2 − 2. The
leftmost and rightmost binding structures are located at x1 and
x2 respectively. A single electron propagating in the ideal leads
(or the intermediate structure) will occupy an energy band of
the form εk = −2t cos k.

The Hamiltonian for the binding structures is

ĤBS =
∑

n=x1,x2

( ∑
m=α,β

∑
σ

εmc†
n,m,σ cn,m,σ

−
∑
σ

(
tcc†

n,α,σ cn,β,σ + h.c.
)+

∑
m=α,β

Umnnm↑nnm↓

+
∑
σσ ′

V nnασnnβσ ′

)
. (3)

Here, m = α, β indexes the two states of each binding
structure, which have corresponding single-electron energies
of εm and intrastate Coulomb repulsions of Um . The
interstate Coulomb repulsion is V , while the interstate hopping
parameter is tc.

The Hamiltonian for the interaction of the leads (and the
intermediate structure) with the binding structures is

ĤI = −
∑

n=x1,x2

∑
σ

[
t1c†

nασ cn+1σ + t1c†
nασ cn−1σ + t2c†

nβσcn+1σ

+ t2c†
nβσcn−1σ + h.c.

]
. (4)

The coupling strengths are t1 to state α and t2 to state β . In
the stub structure we have εα = Uα = 0, εβ = ε0, Uβ = U ,
V = 0, t1 = t ′, t2 = 0 and free choice of other parameters
(in principle), to give a single-state binding site side-coupled
to an otherwise ideal tight-binding structure. In the double QD
structure, we have εα = εβ = ε0, Uα = Uβ = U and free
choice of other parameters.

The objective of this study is to characterize the scattering
behavior of a propagating electron in this system from
two bound electrons, one bound at each binding structure.
To calculate the necessary three-electron wavefunctions (all
other electrons are included implicitly in the parameters
of the Hamiltonian above) in a straightforward manner
while capturing the scattering effects essential to the
generation of entanglement, a few simplifying assumptions and
approximations are made.

Firstly, the leads and the region between the binding
structures are approximated as ideal periodic one-dimensional

structures, so a single-electron wavefunction for a propagating
electron in those regions takes the form of a sum over left- and
right-traveling plane waves multiplied by complex amplitudes,
A eikn + B e−ikn . Secondly, the binding structures are assumed
to be tightly binding (ε0 � −t), and sufficiently well separated
that the spatial wavefunction of the two bound electrons, prior
to scattering, can be approximated as a product of two single-
bound-electron wavefunctions, one centered on each binding
structure, ψ1,2 = φ1φ2. Further, scattering is assumed to
occur in the non-ionizing (and the elastic) regime, so the spatial
wavefunction will take the same form after scattering. The
ground state single-bound-electron wavefunctions and energies
are calculated by simple diagonalization of the Hamiltonian for
a single binding structure.

Thirdly, the tight binding of the bound electrons means
that the three-electron wavefunction can be approximated as
a product of two single-bound-electron wavefunctions and a
single-propagating-electron wavefunction when a propagating
electron is in one of the ideal regions far from a binding
structure, and as a product of a two-electron wavefunction
and a single-bound-electron wavefunction when a propagating
electron is in the vicinity of a binding structure.

Fourthly, calculations are restricted to the elastic scattering
regime, so only one value of |k| is necessary to describe the
propagating electron for each value of the system energy E .
However, in the spin subspace Sz = 1

2 , there are three spin
states: |↓〉p|↑↑〉 (I), |↑〉p|↓↑〉 (II) and |↑〉p|↑↓〉 (III), where
| 〉p is the state of the propagating electron. For those sections
of the wavefunction in which a propagating electron is in one
of the ideal regions far from a binding structure, a separate
component must be defined for each of the spin states I, II, and
III. The usual scattering boundary conditions are used, so there
will be three reflection amplitudes (rI−III), three transmission
amplitudes (pI−III), and three amplitudes characterizing each
of the left-traveling and the right-traveling waves in the
intermediate region (A, BI−III). For those sections of the
wavefunction in which a propagating electron is in the vicinity
of a binding structure (and hence of another electron) the two-
electron element of the wavefunction has two components,
describing the parallel and antiparallel configurations of the
spins. All calculations are carried out in the Sz = 1

2 subspace,
and there are no explicit spin-flip terms, so the spin of the
third electron, bound at the other binding structure, follows
immediately. For convenience, the position of the flying
electron is labeled as n1, while the positions of the leftmost and
rightmost bound electrons are labeled as n2 and n3 respectively.
The form of the wavefunction can then be summarized as

� (n1, n2, n3) =
(
ψ↓↑ (n1, n2) φ↑ (n3)

ψ↑↑ (n1, n2) φ↓ (n3)

)
, (5)

where n1 ≈ n2 ≈ x1, n3 ≈ x2,

� (n1, n2, n3) =
(
ψ↓↑ (n1, n3) φ↑ (n2)

ψ↑↑ (n1, n3) φ↓ (n2)

)
, (6)

where n1 ≈ n3 ≈ x2, n2 ≈ x1,

� =
⎛
⎝
(

eikn1 + rI e−ikn1
)
φ↑ (n2) φ↑ (n3)

rII e−ikn1φ↓ (n2) φ↑ (n3)

rIII e−ikn1φ↑ (n2) φ↓ (n3)

⎞
⎠ , (7)

3
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where n1 � x1 (here the initial spin state is set to I , so the
bound electrons are in the state |↑↑〉), and

� =
⎛
⎝

(
AI eikn1 + BI e−ikn1

)
φ↑ (n2) φ↑ (n3)(

AII eikn1 + BII e−ikn1
)
φ↓ (n2) φ↑ (n3)(

AIII eikn1 + BIII e−ikn1
)
φ↑ (n2) φ↓ (n3)

⎞
⎠ , (8)

where x1 � n1 � x2,

� =
⎛
⎝ pI eikn1φ↑ (n2) φ↑ (n3)

pII eikn1φ↓ (n2) φ↑ (n3)

pIII eikn1φ↑ (n2) φ↓ (n3)

⎞
⎠ , (9)

where x2 � n1.
The approximate two-electron state, one-electron state

product wavefunctions of the form of equation (5) are con-
nected to the three one-electron state product wavefunctions
of the form of equation (7) by boundary conditions of the form[

ψ↓↑ (n1, n2) φ↑ (n3)
] → ψL1, n1 � x1

ψR1, n1 � x1,

(10)

(for the case n1 ≈ n2 ≈ x1, n3 ≈ x2), where

ψL1 =
( (

eikn1 + rI e−ikn1
)
φ↑ (n2) φ↑ (n3)

rII e−ikn1φ↓ (n2) φ↑ (n3)

)
, (11)

ψR1 =
( (

AI eikn1 + BI e−ikn1
)
φ↑ (n2) φ↑ (n3)(

AII eikn1 + BII e−ikn1
)
φ↓ (n2) φ↑ (n3)

)
. (12)

Scattering is characterized by the reflection and transmis-
sion amplitudes rI−III and pI−III, which are obtained by solving
the Schrödinger equation as a set of linear equations for the
traveling wave amplitudes, and the values of the two-electron
wavefunction elements ψ↓↑(n1, n2), ψ↑↑(n1, n2), ψ↓↑(n1, n3)

and ψ↑↑(n1, n3) on the discretized space in the neighborhood
of the respective binding structures. Calculations were carried
out at the range of system energies set by two electrons bound
in the ground states of the (identical) binding structures, εb,
and one electron propagating in the ideal leads. This gives
E = 2εb − 2t cos k, with k restricted to the range k ∈
[0, π]. Transmission probabilities conditional on leaving the
bound electrons in a given spin state (calculated as PI−III =
|pI−III|2 and referred to as ‘partial transmittivities’, since there
are multiple scattering channels) and entanglement data are
displayed in this study as functions of the energy of the
propagating electron.

In the Sz = 1
2 subspace, the spin states of the two bound

electrons are |↑↑〉, |↓↑〉 and |↑↓〉, corresponding to the three-
electron states I, II and III respectively. Entanglement will arise
from the simultaneous presence of II and III, which is indicated
by the measurement of a transmitted electron in the state
|↑〉. Entanglement can be quantified via concurrence [28, 29],
which in the elastic regime of this scattering process can be
written in terms of the transmission amplitudes as

C = 2
∣∣p↑↓ p↓↑

∣∣∣∣p↑↓
∣∣2 + ∣∣p↓↑

∣∣2 , (13)

where the denominator is a normalization factor equal to the
probability of measuring a transmitted electron in the required

spin-up state. This probability is referred to as the ‘probability
of success’, i.e. it is the probability of measuring a transmitted
electron as being in the spin state that allows for entanglement
(not necessarily full) between the bound electrons.

Before reporting the results obtained from this scheme,
it will be useful to briefly revisit a similar scheme explored
in previous studies [19–23], in which interactions between
propagating and static spins are represented in a point s–d
model. In this model, the static spins are handled as a set
of external spin states which interact with the spin of the
propagating electron via an exchange-type interaction when it
reaches a specified point in space. In previous studies, two such
static spins have been entangled by placing them in series on
a one-dimensional structure and propagating an electron along
the structure. For the sake of comparison, we can rewrite the
Hamiltonian of the point s–d scheme in the language used in
this study. Assuming a discretized one-dimensional conductor
which is represented with a Hamiltonian of the same form as
ĤR above (with the sum running from −∞ to +∞), we have
a point s–d Hamiltonian:

ĤPSD =
∑

[n,q]=[x1,z1],[x2,z2]

μ1
[
nn↑nq↑ + nn↓nq↓

]

+
[
μ2 + λc†

n↓c†
q↑cn↑cq↓

]
nn↑nq↓

+
[
μ2 + λc†

n↑c†
q↓cn↓cq↑

]
nn↓nq↑. (14)

Here, x1 and x2 are the points on the 1D conductor of closest
approach to the external spins, while z1 and z2 are the notional
sites, external to the 1D chain, at which the external spins are
bound. The interaction parameters are the potential between
parallel spins μ1, the potential between antiparallel spins μ2,
and the spin-flip coupling strength λ between antiparallel spins.
The most widely used version of this model is based on the dot
product of the two spins and an exchange parameter J , and
hence has the relations λ = −2μ2 = 2μ1.

For reference, the transmission spectra are calculated
with these relations for an electron scattering from two
point s–d spins in series, using the analog of the method
outlined above. Exchange coupling strength is λ = t ,
and there are three intermediate sites. The starting state
is |↓〉p|↑↑〉. The transmission probabilities for each of
the spin states in the Sz = 1

2 subspace are plotted in
figure 2(a), labeled in terms of the spins of the two static
spins. Transmission into the (unentangled) |↑↑〉 state of
the static spins generally predominates, however there is a
significant chance of scattering into one of the two individually
unentangled, simple antiparallel spin states that are necessary
for entanglement. Most important is that these probabilities be
both equal and as high as possible at the same energy. This
means that entanglement will be close to full (C ∼ 1) if the
propagating electron is measured as being transmitted and in
the correct spin state (|↑〉), and that there is a high probability
of this favorable measurement being made. Addressing these
criteria, both the concurrence (calculated from the transmission
amplitudes using equation (14)) and the chance of achieving
a favorable outcome resulting in that concurrence (defined
as PII + PIII) are plotted in figure 2. The result is that
full entanglement can indeed be achieved with the correct

4
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Figure 2. (a) Transmission probabilities for the static spin
configurations ( 1

2 ,
1
2 ),( 1

2 ,− 1
2 ) and (− 1

2 ,
1
2 ) from the starting state

( 1
2 ,

1
2 ). (b) Concurrence and probability of success for an entangled

state, PII + PIII. Parameters used λ = t , μ1 = t/2, μ2 = −t/2. 3
intermediate sites. See section 2, equations (5)–(12), equation (13)
and accompanying discussion for more details.

propagation energy, and that a favorable result to the scattering
process will be achieved with a low but still significant
probability: often>0.2, and reaching a maximum value of 0.3.

The generation of entanglement with a significant
probability of success in this system is markedly at odds with
the case of electrons at two single-state binding structures
in series [17], in which full entanglement does not occur
with any significant probability of success. The reason for
this difference is the Pauli exclusion effect in the single-state
binding structure, which results in strong singlet filtering [13].
The use of two-state binding structures in this study is an
attempt to overcome this effect in a specifically quantum-dot-
based system. In fact, the ‘stub’ structure studied here maps
on to the point s–d model, in the regime μ2 = −λ, λ < 1,
μ1 � 1 (point s–d model), which is equivalent to |ε0| � t
and U � 2ε0 (real-space Anderson ‘stub’ structure). A minor
variation of Hewson’s derivation [14] of the s–d model from
the Anderson model gives the interaction parameters

λ = t2
c

[
1

ε0 + U
− 1

ε0

]
, (15)

μ1 ≈ − t2
c

ε0
. (16)

Figure 3. Non-spin-flip and spin-flip transmission probabilities for a
single stub structure with one bound electron. Parameters used
ε0 = −10t , U = −ε0, and t ′ = t = tc.

3. The stub structure

The ‘stub’ two-state binding structure consists of a one-state
quantum dot placed to one side of a one-dimensional wire, and
coupled to the adjacent segment; this segment is the spatially-
defined second ‘state’ (the site to which the quantum dot is
coupled, in the discrete model used in this study). In the
general representation of a two-state binding structure shown
in figure 1, this corresponds to εα = Uα = 0, εβ = ε0, Uβ =
U , V = 0, t1 = t ′, t2 = 0. The calculations in this study are
carried out in the non-ionizing regime, so ε0 � −t . Scattering
calculations are carried out over the energy band for an electron
bound at each structure and a propagating electron, that is
2εb−2t < E < 2εb+2t (corresponding to k ∈ [0, π]). For this
structure, in the non-ionizing regime, the ground state single-

electron bound state energy is εb ≈ ε0+ t2
c
ε0

, and the first excited

state energy is εxs ≈ − t2
c
ε0

, so the elastic regime extends across
the entire band. Finally, in order to produce entanglement
between the two bound electrons, a significant amplitude for
spin-flip scattering (that is, the transmitted or reflected electron
being a different spin to the incident electron, indicating a swap
in the electron occupying the binding structure) is desirable. To
achieve this, a resonance with the energy of the two-electron
occupancy state will produce a resonant peak in the spin-flip
scattering amplitudes. Such a resonance will occur for some
energy in the band if −2t < ε0 + U < 2t .

To help clarify the spin-dependent scattering behavior of
an electron from two electrons bound at stub structures in
series, the spin-dependent scattering behavior of an electron
from a single bound electron at a stub structure is presented
in figure 3. Within the constraints of the stub structure, the
parameters used are ε0 = −10t , U = −ε0, and t ′ = t = tc .
The transmission probabilities are shown for non-spin-flip and
spin-flip scattering. By symmetry, the reflection probabilities
are equal to the spin-flip transmission probability, except at the
very top and bottom of the band.

In the limit ε0 → −∞, the transmission amplitudes can
be shown through straightforward but tedious algebra to be

pnsf = t2
c + 2it sin k (2t cos k − (ε0 + U))

2t2
c + 2it sin k (2t cos k − (ε0 + U))

, (17)

5
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psf = −t2
c

2t2
c + 2i t sin k (2t cos k − (ε0 + U))

, (18)

and in this limit rnsf = rsf = psf. These formula accurately
describe the scattering for finite ε0 except at the very top and
bottom of the band. Examination of these formulae or figure 3
shows that when −2t cos k = ε0 + U a resonance will occur
at which Pnsf = Psf = Rnsf = Rsf = 0.25, a peak in
the probability of spin-flip scattering (and a minimum in the
probability of non-spin-flip scattering).

In figure 4(a), the scattering probabilities to bound
electron spin states |↑↑〉, |↑↓〉 and |↓↑〉 from the starting state
|↓〉p|↑↑〉 are presented for an electron scattering from two
electrons bound at stub structures in series. The parameters
used are once again ε0 = −10t , U = −ε0, and t ′ = t = tc ,
with 3 intermediate sites. Again, the simultaneous presence
of states |↑↓〉 and |↓↑〉 will give entanglement. Transmission
probabilities that are near-equal will yield a highly entangled
state of the bound electrons if a transmitted electron is
measured to be spin-up. High transmission probabilities
for these states indicates a higher probability of obtaining
this successful outcome. Figure 4(b) plots the concurrence
achieved across the propagating electron band along with the
probability of obtaining the corresponding successful outcome
to the scattering process (PII + PIII).

Probability of success is low but still significant (typically
> 0.15) at energies that allow for full entanglement, with
a maximum probability of success at full entanglement of
∼0.23. These figures are comparable to those found with the
point s–d model. However, in the regime used here to obtain
these probabilities, the stub structure does not map on to the
point s–d model, since obtaining a reasonably high spin-flip
amplitude at individual stub structures approximately requires
−2t < ε0+U < 2t , that is ε0 ∼ −U , whereas correspondence
with a point s–d scenario requires U � −2ε0.

4. Two quantum dot structure

The ‘double quantum dot’ structure consists of one binding
state embedded in a one-dimensional wire, and coupled to
a second binding state to the side of the wire. In the
general representation of a two-state binding structure shown
in figure 1, this corresponds to εα = εβ = ε0 and Uα = Uβ =
U . We also set t2 = 0. The non-ionizing regime is again
defined by ε0 � −t . In this structure, the ground state single-
electron bound state energy is εb ≈ ε0 − tc, and the first excited
state energy is given by εxs ≈ ε0 + tc. The coupling strength
tc is set at a physically realistic maximum of t . The elastic
regime of the energy band for two bound electrons at two
binding structures and one propagating electron is therefore
2εb − 2t < E < 2εb, corresponding to k ∈ [0, π2 ]. Scattering
behavior is calculated in this range. For this structure, the
introduction of a strongly binding and strongly backscattering
state in the main line of the one-dimensional wire means that
a strong Coulomb repulsion, U , is necessary to allow a high
probability for transmission, hence it is required that −2t <
ε0 + U < 0. To avoid the kind of spin-filtering created by
a single-state binding structure, it is also necessary to have a

Figure 4. (a) Transmission probabilities for the bound electron spin
configurations ( 1

2 ,
1
2 ),( 1

2 ,− 1
2 ) and (− 1

2 ,
1
2 ) in stub structures from the

starting state ( 1
2 ,

1
2 ). (b) Concurrence and probability of success for

an entangled state, PII + PIII . Parameters used ε0 = −10t , U = −ε0,
and t ′ = t = tc. 3 intermediate sites. See section 2,
equations (5)–(12), equation (13) and accompanying discussion for
more details.

high probability of transmission for the triplet configuration of
the bound and propagating electrons, so the interstate Coulomb
repulsion V must also be sufficiently high: −2t < ε0 +V < 0.

Once again, the spin-dependent scattering behavior of a
single binding structure is presented in order to illuminate the
behavior of two binding structures in series. The behavior of
one-electron scattering from another bound at a two quantum
dot structure is plotted in figure 5. Within the constraints
of the two quantum dot structure, the parameters used are
ε0 = −10t , U = −ε0 − t , V = 0.95U and t ′ = t = tc .
The transmission probabilities are shown for non-spin-flip and
spin-flip scattering. The transmission characteristics of this
kind of structure have been discussed elsewhere by the authors
of this study [13]. Briefly, they can be explained by noting that
the two-electron wavefunction in the vicinity of the binding
structure during scattering can be approximated as a sum of
four eigenstates with energies close to those of the system
being examined, and hence four peaks are expected in the
transmission spectrum. As expected, there are two peaks in the
non-spin-flip spectrum and two peaks in the spin-flip spectrum.

In figure 6(a), the scattering probabilities to bound
electron spin states |↑↑〉, |↑↓〉 and |↓↑〉 from the starting state
|↓〉p|↑↑〉 are presented for an electron scattering from two

6
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Figure 5. Non-spin-flip and spin-flip transmission probabilities for a
single two quantum dot structure with one bound electron.
Parameters used ε0 = −10t , U = −ε0 − t , V = 0.95U , and
t ′ = t = tc.

electrons bound at two quantum dot structures in series. The
parameters used are ε0 = −10t , U = −(ε0 + t), V = 0.95U
and t ′ = t = tc , with 3 intermediate sites. Figure 6(b)
plots the concurrence achieved across the propagating electron
band along with the probability of obtaining the corresponding
successful outcome to the scattering process (PII + PIII).

Full entanglement is achieved in two narrow regions of
the propagating energy band and the elastic scattering regime.
At both these points, the probability of containing the required
outcome to the scattering process is significant, ranging from
∼0.17 to a maximum of ∼0.24. These figures are slightly
higher than those for the stub binding structure, although of
course any implementation of this double quantum dot binding
structure will be complicated relative to the stub structure
by the increased possibility of inelastic scattering, and the
necessity of a relatively high interstate Coulomb repulsion.

The two quantum dot binding structure will not map on
to the point s–d model in any parameter regime of interest
to the generation of entanglement, since the requirement that
U ∼ V means that states in which two electrons of opposite
spin occupy the same spatial state will be as important as states
in which one electron occupies each spatial state. Mapping to
the point s–d model excludes such states, except as ‘virtual’
excitations.

5. Summary and conclusions

Two-state binding structures based on the ‘real-space Anderson
model’ represent a quasi-zero-dimensional structure within, for
example, a carbon nanotube or quantum wire, such as a gate-
defined quantum dot with multiple accessible electronic states.
They can be used to bind an electron so its spin can be used as a
qubit. In this study, the scattering behavior has been calculated
in the elastic regime and the Sz = 1

2 spin subspace for one
propagating electron scattering from two electrons bound in
series at separate binding structures in a one-dimensional wire.
In particular, it has been shown that for the correct energy
(and hence wavevector) of the propagating electron, spin-flip
scattering events can result in a fully entangled state of the

Figure 6. (a) Transmission probabilities for the bound electron spin
configurations ( 1

2 ,
1
2 ), ( 1

2 ,− 1
2 ) and (− 1

2 ,
1
2 ) in two quantum dot

structures from the starting state ( 1
2 ,

1
2 ). (b) Concurrence and

probability of success for an entangled state, PII + PIII. Parameters
used ε0 = −10t , V = 0.95U , U = −ε0 − t , and t ′ = t = tc.
3 intermediate sites. See section 2, equations (5)–(12), equation (13)
and accompanying discussion for more details.

two bound electrons. Obtaining such a fully entangled state
is dependent upon measurement of a transmitted, propagating
electron with spin state |↑〉p .

The entanglement (quantified as concurrence) spectrum
and probability of obtaining a favorable outcome to the
scattering process as a function of propagation energy have
been calculated, along with the basic scattering amplitudes for
the three possible spin states, for two types of two-state binding
structure. One of these was a ‘stub’ structure, in which a
single-state binding site is coupled to one segment of the 1D
wire, with the segment acting as a second ‘state’. In this case
full entanglement was obtained with a maximum probability
of success of ∼0.23. The other was a ‘double-quantum-dot’
structure, with one binding state embedded in the 1D wire and
a second coupled to it from the side. Full entanglement was
achieved with a maximum probability of success of ∼0.24.
Although this is slightly higher than the stub structure, it
should be noted that implementations of the double-quantum-
dot structure will be complicated by the possibility of inelastic
scattering (especially at low values of interstate coupling, tc)
and the necessity for a high interstate Coulomb repulsion (V ).
We have obtained analogous results for the ‘point s–d’ model,
as applied in the discretized one-dimensional structure used in
this study.
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The ability to produce entanglement between two
electrons bound in series at two-state binding structures,
by scattering a third electron from them, is a considerable
improvement on the situation for single-state binding
structures [17]. In the latter case, entanglement is only
generated with a very low probability of success (∼10−4).
The reason for this difference is that the combination of
backscattering and Coulomb-mediated resonance in the single-
state structures leads to very strong singlet/triplet filtering in
the spin states of the propagating electron and each bound
electron; information about previous scattering events is
therefore almost completely erased each time the propagating
electron scatters from a bound electron of the opposite spin.
The use of two (energetically accessible) states at each
binding structure eliminates this effect. This is in distinction
the approach taken in the authors’ previous work [17], in
which a symmetric parallel configuration was used to obtain
simultaneous interactions with both bound electrons.

While the probability of success in generating entan-
glement with a pair of two-state binding structures is not
high, it is certainly significant; and it should be noted that
the parameters used here were not rigorously optimized with
respect to probability of success. Some improvement from the
figures reported here is therefore expected with careful tuning
of the systems involved. Additionally, recent results [30]
suggest that repeated scattering of propagating electrons from
bound spins may give rise to a sequence of states that converges
on full entanglement, even though each individual step is only
partially entangling.

Given the ever-increasing degree of control that is
experimentally available over single electrons in quantum dots,
the authors hope that these results can act as a guide to workers
in solid state quantum computation in the not-too-distant-
future.
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